

Electronics for the Future

[Additional approval and change approval document]

Affected Manufacturing Department: HPD Division

Affected product group: SiC

SiC 6-inch factory additional approval

Document ID:2222002_PCN Details

Table of contents

1. Background of the change	P.03
2. Summary of this approval	P.04
3. Summary of changes	P.05
4. Affected Products	P.06
5. Factory Overview	P.07-08
6. List of Changes	P.09
7. Comparison of production plants	P.10
8. 5M Change Point Verification	P.11
9. Process Change Point Verification	P.12-13
10. Product Performance Evaluation Results	P.14
11. Summary of Evaluation Results	P.15
12. Comparison of electrical characteristics	P.16-17
13. Reliability Test Results	P.18-24

[About SiC 6inch additional approval]

In order to expand the production capacity, we are planning to introduce larger wafer sizes, 6inch instead of 4inch.

For the future supply, We ask for your cooperation to approve.

*Wafer manufacturing plants of new products have proven track records with SiC 4GMOSFET and other Si products.

For the 4-inch line, production is scheduled to end after the 6-inch line transition.

Scope

SiC 3rd Generation MOSFET TO-247N Package

Content

With regard to the above products, we will expand the wafer manufacturing process from the current ROHM Apollo Co., Ltd. Chikugo Plant to the Miyazaki Plant of Lapis Semiconductor Co., Ltd.

The specifications and performance of the final product, including electrical characteristics and reliability, are unchanged.

Reason

To expand production capacity

Verification

- 1. Verification of changes between current and additional plants.
- 2. Comparison of specifications and performance between current products and new products.

Schedule

Please respond within one year after receipt of the application.

Fabrication (Wafer manufacturing)

	Using	Change Request
Factory	ROHM Apollo co., ltd. (Chikugo)	LAPIS Semiconductor Co., Ltd. (Miyazaki)
SiC Wafers	4 inch	6 inch

Package (Assembly)

	Using	Change Request
Factory	No chang	ge(RIST)
Package	No change (TO-247N)	
Dimensions	No ch	ange
Marking	No ch	ange
Tube	No ch	ange

**RIST:ROHM INTEGRATED SYSTEMS (THAILAND) CO.,LTD.

Specification

	Using	Change Request	
Datasheet (Electrical Characteristics)	Same		
Reliability Test	OK	OK	

Please refer to PNList

5. Factory Overview

☐ Company Name:	Lapis Semiconductor Co., Ltd. Miyazaki Plant
☐ Representative:	Kazumasa Wakuno(President and CEO)
☐ Location:	727 Kihara, Kiyotake, Miyazaki City, Miyazaki Prefecture
☐ Date of establishment:	October 1, 2008
☐ Capital:	300 million yen (wholly owned by ROHM Corporation
☐ Business:	Power Devices, MEMS, WL-CSP, etc.
□ Number of employees:	686 (as of October 2020)

■ List of changes from conventional products

Item	Current products	New products	Purpose of change
Factory	ROHM Apollo co., ltd. (Chikugo)	LAPIS Semiconductor Co., Ltd. (Miyazaki)	improve productivity
Wafer size	4inch	6inch	improve productivity
Back side metal	Ti-Ni(0.6μm)-Au-Ag Ti-Ni(1.2μm)-Au-Ag	Ti-Ni(1.2μm)-Au	improve productivity
Passivation	Polybenzoxazole (PBO)	Polyimide (PI)	improve productivity
Passivation structure of outer peripheral area (red frame below)	PBO SiN Gate Finger Metal Metal SiC Insulator Back metal	Polyimide SiN Gate Finger Metal Metal SiC Insulator Back metal	improve against passivation cracks due to thermal stress

For 6inch products ,the back metal composition and passivation structure will change.

7. Comparison of production plants

		Conventional factory	Additional approval factory
Production plant		Rohm Apollo Chikugo	Lapis Semiconductor Miyazaki
Wafer Diameter		4inch,6inch,8inch	6inch
	Temperature	23℃	23℃
	Humidity	45%	45%
Clean room	Cleanliness* (wafer exposure area)	Class3(0.1um)	Class4(0.1um)
	Airflow method	laminar flow	laminar flow
Design Rules		0.35um	0.35um
Quality Management System		SPC System	SPC System

^{*}Cleanliness is class according to ISO standards

There is no difference in The clean room environment of conventional factory and additional approval factory.

			Producti	on plant			
			current products	New products			
		Target	Rohm Apollo Lapis Semiconductor Chikugo Miyazaki 4inch•6inch 6inch		Concern	Verification	Decision
	Man	Operator	Adoption of licensing system	Adoption of licensing system	Difference in work skills	No skill difference	No problem
level	Machine	Production equipment	6inch wafer-compatible equipment (4inch combined use)	6inch wafer-compatible equipment (Mass production results)	Difference in specification	Process change point verification	
Z	Material*	Wafer	4inch wafer	6inch wafer	Difference in	 Electrical characteristics	
at		Passivation	Polybenzoxazole	Polyimide	specification,	n,	No problem
Jes		Back side metal	Ti/Ni/Au/Ag	Ti/Ni/Au	Reliability		
Change	Method Job method		6inch wafer process line (4inch combined use)	6inch wafer process line (Mass production results)	Difference in specification	Reliability	
	Measurement	After wafer process measurement	6inch wafer-compatible equipment (4inch combined use)	6inch wafer-compatible equipment (Mass production results)	Difference in measurements between the provers	Correlation evaluation	No problem

*Materials are only those that have changed.

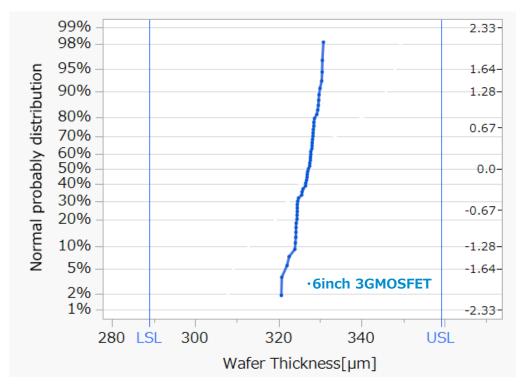
In accordance with the 5M change point, we confirmed that there are no problems.

		Equipment a	and methods	ma	aterial	Differences and		decision	
No	Process operation	Apollo Chikugo	Lapis Miyazaki	Apollo Chikugo	Lapis Miyazaki	concerns	Validation results	O or ×	document
1	Fab Input		-	4inch Wafer	6inch Wafer	Difference in inch diameter	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
2	Cleaning	Same type s	specifications	Same typ	e chemicals	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
3	Oxidation	Same type s	specifications	Same	type gas	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
4	Photolithography (resist coating)	Same type s	specifications	Same typ	e chemicals	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
5	Photolithography (exposure)	Same type s	specifications		-	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
6	Photolithography (resist development)	Same type s	specifications	Same typ	e chemicals	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
7	Wet Etching	Same type s	specifications	Same typ	e chemicals	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
8	Resist remove (ashing)	Same type s	specifications	Same	type gas	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
9	SiC Trench Etching (dry)	Same type s	specifications	Same	type gas	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
10	Implantation	Same type s	specifications	Same	type gas	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
11	Activation annealing	Same type s	specifications	Same	type gas	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24

We have confirmed that there are no problems with all the changes in each process.

9. Process Change Point Verification

		Equipment an	d methods	ma	terial	Differences and		decision	
No	Process operation	Apollo Chikugo	Lapis Miyazaki	Apollo Chikugo	Lapis Miyazaki	concerns	Validation results	O or ×	document
12	Formation of poly-Si	Same type sp	ecifications	Same	type gas	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
13	Poly-Si Etching (dry)	Same type sp	ecifications	Same	type gas		No difference in specification No failure in reliability test	0	P.15-17 P.18-24
14	Deposition inter-layer	Same type specifications		Same	type gas	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
15	SiO2 interlayer Etching(dry)	Same type sp	ecifications	Same	type gas		No difference in specification No failure in reliability test	0	P.15-17 P.18-24
16	Forming surface electrode	Same type sp	ecifications	Same typ	e materials	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
17	Metal Etching (Wet)	Same type sp	ecifications	Same typ	e chemicals		No difference in specification No failure in reliability test	0	P.15-17 P.18-24
18	Metal Etching (Dry)	Same type sp	ecifications	Same	type gas	Nothing	No difference in specification No failure in reliability test	0	P.15-17 P.18-24
19	Forming passivation layer	Same type sp	ecifications	PBO	PI		No difference in specification No failure in reliability test	0	P.15-17 P.18-24
20	Back Side Grinding	Done before Fab Input	New process	Same typ	e materials		No difference in Wafer thickness No difference in specification No failure in reliability test	0	P.14 P.15-17 P.18-24
21	Forming backside electrode	Same type sp	ecifications	Ti/Ni/Au/Ag	Ti/Ni/Au		No difference in specification No failure in reliability test	0	P.15-17 P.18-24
22	Electrical characteristic test	Same type sp	ecifications		_	Nothing	No difference in specification	0	P.15-17
23	Dicing	Same type sp	ecifications	Same typ	e materials	Nothing	No difference in specification	0	-


We have confirmed that there are no problems with all the changes in each process.

10. Product Performance Evaluation Results

■ SiC wafer thickness after Grind

*The graph on the left shows the thickness of only the board. The wafer thickness described in the data sheet contains the thickness of the metal.

 Wafer
 6inch

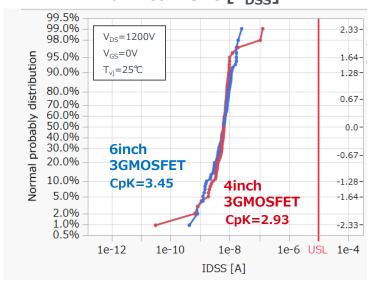
 Average
 326.7μm

 σ
 2.5μm

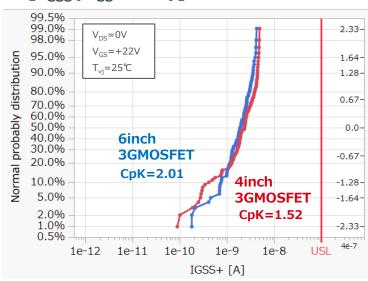
*USL: Upper Specification Limit LSL: Lower Specification Limit

We confirmed that there is no problem with the process capability of the grinding process(new process).

11. Summary of Evaluation Results

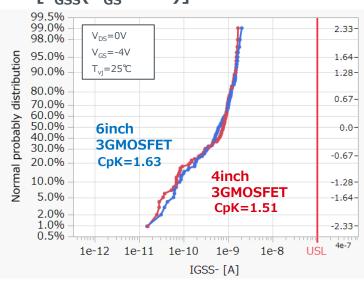

	4inch 3GMOSFET (Apollo Chikugo)	6inch 3GMOSFET (Lapis Miyazaki)		
Static Characteristics (I _{DSS} ,I _{GSS} ,V _{th} ,V _{SD} ,R _{on})	Same Value			
Dynamic Characteristics (C _{iss} ,C _{oss} ,C _{rss} ,Q _g ,Q _{gs} ,Q _{gd})	Same	Value		
Switching Characteristics	Same Value			
Thermal Resistance	Same Value			
Electrical Static Discharge	Same	Value		
Gate Oxide Reliability	Same Value*checked by TDDB test			
Reliability Test Result	AEC-Q101 qualified	AEC-Q101 qualified		

There is no difference in various electrical characteristics between 4inch products and 6inch products.


- Electrical Characteristics normal probability distribution $(T_{vi}=25^{\circ}C)$
- 4inch 3GMOSFET [SCT3040KLHRC11]
- •6inch 3GMOSFET [SCT3040KLHRC11]

Zero Gate voltage Drain current [I_{DSS}]

Wafer	N[pcs]	Ave[µA]	max[µA]	min[µA]	σ[μΑ]
4inch	100	0.00843	0.13011	0.00003	0.00679
6inch	100	0.00673	0.02534	0.00043	0.00430


Gate-Source leakage current $[I_{GSS}(V_{GS}=22V)]$

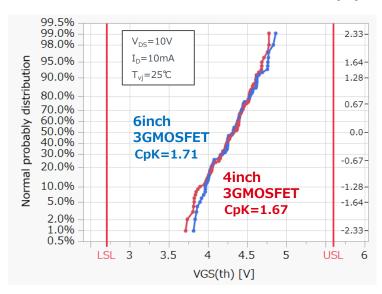
Wafer	N[pcs]	Ave[nA]	max[nA]	min[nA]	σ[nA]
4inch	100	2.394	4.919	0.087	1.353
6inch	100	2.031	4.263	0.178	1.006

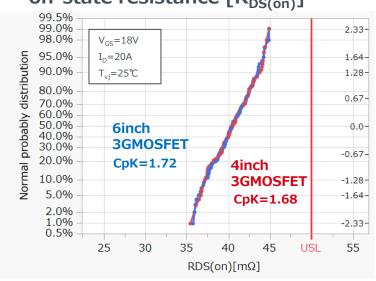
*USL: Upper Specification Limit LSL: Lower Specification Limit

Gate-Source leakage current $[I_{GSS}(V_{GS}=-4V)]$

Wafer	N[pcs]	Ave[nA]	max[nA]	min[nA]	σ[nA]
4inch	100	0.716	1.658	0.016	0.486
6inch	100	0.713	2.015	0.015	0.512

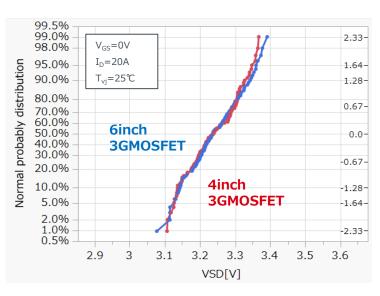
There is no difference in various electrical characteristics between 4inch products and 6inch products.


12. Comparison of electrical characteristics


- Electrical Characteristics normal probability distribution (T_{vi}=25°C)
- 4inch 3GMOSFET [SCT3040KLHRC11]
- •6inch 3GMOSFET [SCT3040KLHRC11]

Gate threshold voltage $[V_{GS(th)}]$

Wafer	N[pcs]	Ave[V]	max[V]	min[V]	σ[V]
4inch	100	4.30	4.78	3.72	0.26
6inch	100	4.31	4.87	3.82	0.25


Static Drain-Source on-state resistance [R_{DS(on)}]

Wafer	N[pcs]	Ave[mΩ]	max[mΩ]	min[mΩ]	σ[mΩ]
4inch	100	40.46	44.92	35.43	2.29
6inch	100	40.45	44.88	35.76	2.24

*USL: Upper Specification Limit LSL: Lower Specification Limit

Forward voltage [V_{SD}]

Wafer	N[pcs]	Ave[V]	max[V]	min[V]	σ[V]
4inch	100	3.24	3.27	3.11	0.07
6inch	100	3.24	3.39	3.08	0.07

There is no difference in various electrical characteristics between 4inch products and 6inch products.

■ List of test results

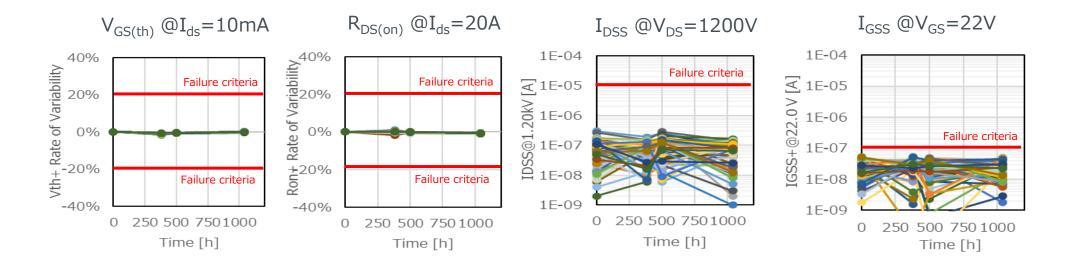
Test items	Test conditions	Compliant standards	Exam time	Sample size n(pcs)	Failure Pn (pcs)
High Temperature Reverse Bias(HTRB)	T _a =175℃, V _{DS} =V _{DSmax}	AEC-Q101	1000 h	77×3lot	0
High Temperature Reverse Bias(HTGB+)	T _a =175℃, V _{GS} =V _{GSmax}	AEC-Q101	1000 h	77×3lot	0
High Temperature Reverse Bias(HTGB-)	T _a =175℃, V _{GS} =V _{GSmin}	AEC-Q101	1000 h	77×3lot	0
Temperature humidity bias(THB)	T _a =85℃, Rh=85%, V _{DS} =100V	AEC-Q101	1000 h	77×3lot	0
Temperature cycle (TCY)	$T_a=-55$ °C(30min) \sim T _a =150°C(30min)	AEC-Q101	1000 cycles	77×3lot	0
Pressure cooker(AC)	T _a =121℃, 2atm, Rh=100%	AEC-Q101	96 h	77×3lot	0

**Pretreatment conditions: Aging with pressure-docker equipment (105°C, 100%, 1.22×105Pa, 4h)

Measurement items and failure criteria

Measurement items	Conditions	Failure criteria
Gate-Source leakage current(I_{GSS})	Depends on specification conditions	Complies with AEC-Q101 standards
Zero Gate voltage Drain current (I_{DSS})	Depends on specification conditions	Complies with AEC-Q101 standards
Gate threshold voltage (V _{GS(th)})	Depends on specification conditions	Complies with AEC-Q101 standards
Static Drain-Source on-state resistance $(R_{DS(on)})$	Depends on specification conditions	Complies with AEC-Q101 standards

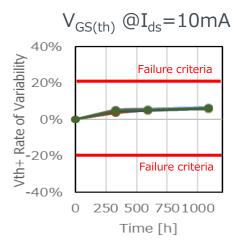
As a result of the reliability test, it was confirmed that there was no problem.

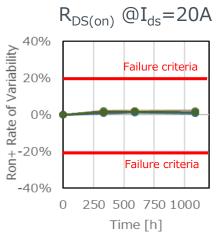


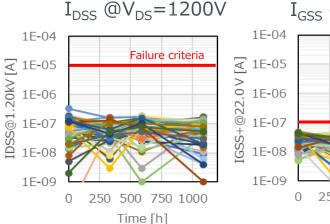
■ High Temperature Reverse Bias (HTRB) [V_{DS}=V_{DSmax}, T_a=175°C]

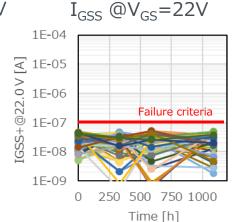
Wafer:S4101MUFCZ

Package:SCT3040KL(TO-247N)

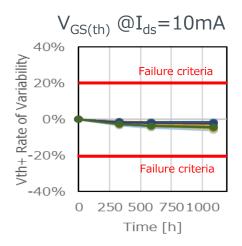

Sample size:77pcs×3lot

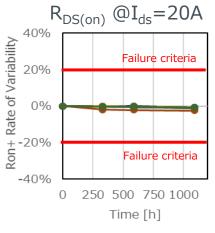


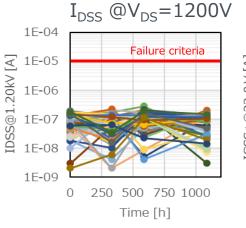

No Failure after 1000h over

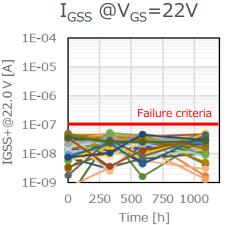


■ High Temperature Gate Bias+ (HTGB+) $[V_{GS}=V_{GSmax}, T_a=175^{\circ}C]$



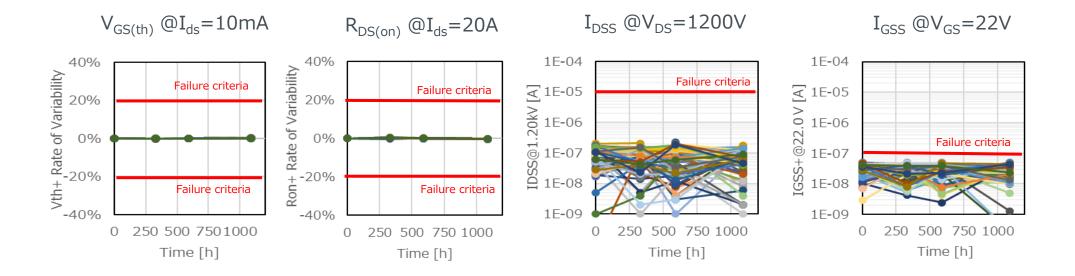

Wafer:S4101MUFCZ


Package:SCT3040KL(TO-247N)


Sample size:77pcs×3lot

■ High Temperature Gate Bias- (HTGB-) $[V_{GS}=V_{GSmin}, T_a=175^{\circ}C]$

No Failure after 1000h over



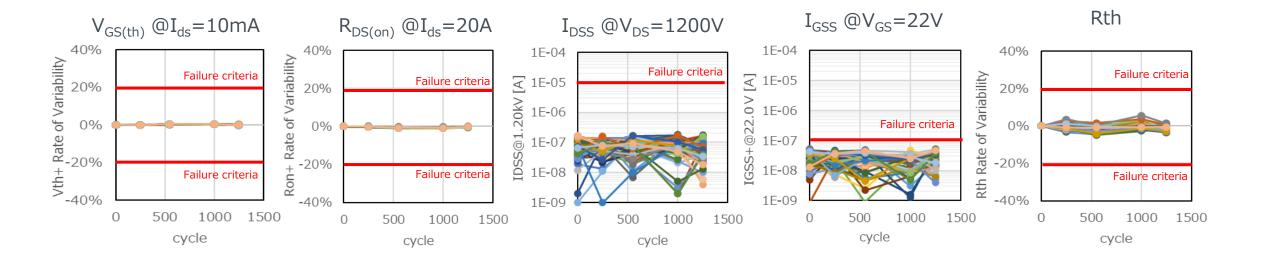
■ Temperature humidity bias(THB) $[V_{DS}=100V, T_a=85^{\circ}C, Rh=85^{\circ}]$

Wafer:S4101MUFCZ

Package:SCT3040KL(TO-247N)

Sample size:77pcs×3lot

No Failure after 1000h over



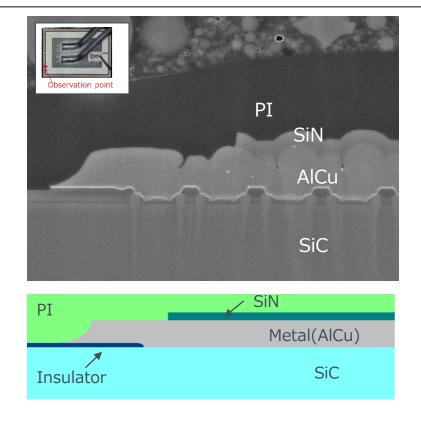
■ Temperature cycle (TC) $[T_a=-55^{\circ}C(30\text{min})\sim150^{\circ}C(30\text{min})]$

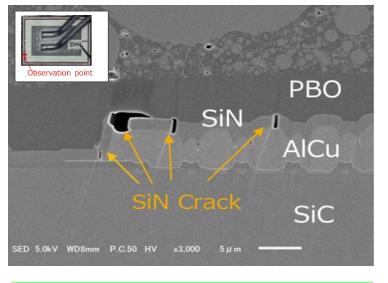
Wafer:S4101MUFCZ

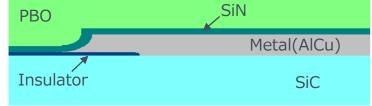
Package:SCT3040KL(TO-247N)

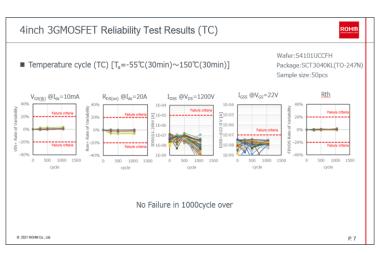
Sample size:77pcs×3lot

No Failure after 1000cycle over


7-3. Reliability Test Results (TC)



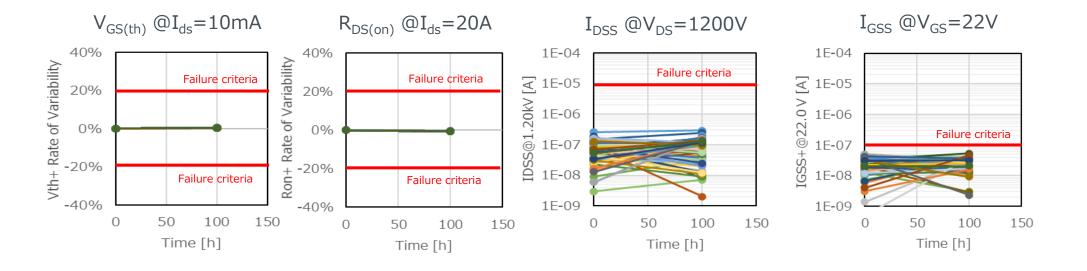

■ Cross sectional observation of Non-defective samples after TC 1000cyc


6inch 3GMOSFET [SCT3040KLHRC11]

4inch 3GMOSFET [SCT3040KLHRC11]

In 4inch 3GMOSFET, SiN layer in outer peripheral area may be cracked due to thermal stress such as temperature cycles. However, at the time of the TC 1050 cycle, the cracks are minor and there are no changes in characteristics, so there is no problem.

Structural changes have improved robustness against the cracking of the passivation layer(SiN).



■ Pressure cooker (AC) [T_a=121°C, 2atm, Rh=100%]

Wafer:S4101MUFCZ

Package:SCT3040KL(TO-247N)

Sample size:77pcs×3lot

No Failure after 96h over

Electronics for the Future